
D-AISS 2N DESCRIIO CONSTRAINTS ON A DIGITAL CIRCUIT'S IEHAVIOR L11
(U) ROCHESTER UNIV NY DEPT OF CONPUTER SCIENCE
D B.IDhIN JUL 67 TR-222 DAC6-5-C-0001

UNCLSSIFIED F/O 9/1 MEhhhhhEE000hEEEI
IlC



B IB~ ' I~ 1112 .2

hill '*'-L 1112-0.

11111-25 j~14 1111.

*~~~ ~~~ N w w * .W W WW V V V -W . V



1. IF "A

00 -- i"escrioing constraints--

on a Digital Circuit's Behavior

Doug Baldwin
I Department of Computer Science

The University of Rochester
Rochester, NY 14627

July 198
TR 222

Abstract

'EECTEJAN 1 51988

Deatmn f Computer Scie'nce

University 'of Rochester
Rochester, New York 14627

DISTEBTON STATMTA '1 12 22 005
Approved for public re1es.;
1--- Distribution Unlnimt',d



Describing Constraints
on a Digital Circuit's Behavior

Doug Baldwin DT! C
Department of Computer Science L

The University of Rochester L C"N
Rochester, NY 14627 JAN 1 5 1988 "

TR 222 U-9
July 1987

Abstract

Automatic design of circuits from high-level descriptions of their
behavior requires that some physical constraints be included in
behavioral specifications. This paper describes a simple but powerful
mechanism for doing so. The key ideas behind this approach are
attributes to represent physical parameters of a circuit and constraint
statements to restrict the values that attributes may assume. Practical
circuits have been described using these ideas. An algorithm for
extracting constraints from specifications and deciding which parts of
the specifications are subject to which constraints is also presented and
proven correct. .
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1 Introduction

Behavioral synthesis can be loosely defined as the process of translating a high-
level description of what one wants a circuit to do into a circuit design ready for
fabrication. General definitions of "high-level" and "ready for fabrication" are hard
to come by, but for the purposes of this paper "high level" means about as abstract
as a modern progranTmning language, and "ready for fabrication" means at least as
detailed as a gate or gate-macro level schematic diagram. People have been working
for a long time on computer programs to automate behavioral synthesis, but only
recently have they had any success. The difficulty of behavioral synthesis is hard
to understand if the above definition is accepted, since Figure 1 seems to present a
satisfactory solution: a conventional high-level language compiler's output is pro-
grammed into a read-only memory, which is then embedded in an otherwise fixed
microprocessor design to form the synthesized "hardware". Of course this solution is
not satisfactory, and the reason is that the definition of behavioral synthesis ignored
a very important point: not only must the synthesized circuit exhibit the same be-
havior as the input specification, it must also do so within certain cost limits. These
limits may be expressed as bounds on acceptable power consumption, layout area,
speed, testability, et cetera. It is the need to design subject to these constraints
that changes behavioral synthesis from a trivial application of well-known compiler
technology into the extremely difficult problem that it really is.

Microprocessor

Source Compiler 0Jr

I~LI

Figure 1. A Naive Circuit Synthesizer

Constraints on circuit design also arise from purely behavioral considerations.
In other words, there are cases in which a circuit cannot be said to behave correctly
if it does not meet certain physical constraints. This follows from the fact that
circuits are not used in isolation, but rather in conjunction with other devices (e.g.,
sensors and displays that provide inputs and present outputs). In order to properly
interface with these devices, a circuit must transmit and receive data at certain
speeds, encode it as currents or voltages according to some agreed-upon standard,
et cetera. Just as cost requirements do, these interface protocols define bounds on
circuit speed, signal levels, et cetera.

Constraints can be either static or dynamic. A constraint is static if it does not
change as the circuit does different things. A good example is a limit on layout area.
Dynamic constraints can change as a circuit runs. Examples include devices with
variable data transmission or reception rates, and devices with a low-power "stand-
by" mode. As a general rule of thumb, the more intimately a constraint is connected
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to a circuit's behavior the more dynamic it is likely to be, while constraints that
limit the costs of building or operating a circuit tend to be static.

This paper describes a simple way of combining the specification of constraints
with that of more conventional forms of behavior in a single language. The scheme
is based on the ideas of attributes that represent physical quantities associated with
variables or code fragments, and constraint statements that describe constraints
in terms of these attributes. This scheme is quite flexible despite its simplicity.
With only attributes and constraint statements as basic notions it describes both
those constraints that are inherent parts of a circuit's behavior and those that are
optimization goals for its implementation. Similarly, it handles both static and
dynamic constraints. Constraints are vital parts of a complete circuit description,
and so are described in terms that are consistent with an otherwise high level of ab-
straction. For example, resource constraints are given in direct terms of commonly
used quality measures like power consumption or layout area rather than in indirect
terms like number of parts, timing is described in terms of actions in the behavioral
description rather than device speeds, et cetera. The basic approach is easy to
integrate into larger behavioral description languages. This has been demonstrated
for two languages, one that was not originally designed with constraints in mind
and one that was. The utility of the scheme has been demonstrated in descriptions
of several realistic circuits.

This work is novel for a number of reasons:

" It offers a single notation that can describe constraints used for several distinct
purposes (for example, static constraints used to optimize a circuit's imple-
mentation versus dynamic constraints that are integral parts of its behavior).
Furthermore, this notation fits comfortably into a highly abstract (relative to
the final hardware) language. Much previous work on constraints in circuit syn-
thesis considered only static constraints for optimization, and required them to
be given to synthesizers independently of other aspects of the circuit's behav-
ior (examples include RT-CAD [16], Hafer's work [9], and quite recently Schwa
[14]). Mimola [12] is an example of a system that does not separate constraint
specification from other aspects of behavior, but does require constraints to be
described at a lower level of abstraction than everything else. Mimola's con-
straints are given in terms of hardware elements (e.g., the number of modules
of a given type available, their speeds, et cetera), whereas the rest of its input
consists of high-level algorithms.

" It is able to deal with dynamic constraints as well as static ones. Several recent
reports [6, 13] have described ways of including dynamic timing constraints in
behavioral descriptions. That work is roughly equivalent to the "time points"
(see below) of mine, but does not include the general system of attributes and
constraint statements that I do.

" It deals with the need to understand constraints at compile time rather than
run time. The idea of attributes to represent physical features of a circuit
has already appeared in VHDL [10] and ISPS [3], and both VHDL and CON-
LAN [15] allow programmers to write "assertions" that are superficially similar
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to constraint statements. However, constraint statements are intended to be
"evaluated" at compile time in order that a synthesizer can take the necessary
actions to ensure that the corresponding condition holds in the final circuit.
whereas an assertion is intended to be evaluated at run time (or simulation
time), and its success or failure is simply a check that a simulation is running
as expected. The assertion facilities in languages like VHDL or CONLAN are
too general to guarantee that assertions can be understood at compile time.
The system described here has the restrictions needed for compile time han-
dling of constraints, yet appears to be expressive enough for use in serious
circuit design.

2 Describing Constraints

The basic idea is to associate attributes with parts of a specification to represent
physical quantities associated with those parts. For example, a procedure or other
block of code might have attributes for the power consumption or layout area of
its final implementation, a variable might have attributes describing how the values
it takes on are encoded as voltages, et cetera. A constraint is simply a statement
that restricts the values that an attribute can have. For example, constraints might
instruct a synthesizer to minimize certain areas or power consumptions, use certain
voltage ranges to encode a variable's values, et cetera. Because constraints are in-
troduced by executable statements, they can be either static or dynamic depending
on whether the appropriate statements are executed once or more than once. These
ideas define a schema according to which any number of different languages can be
built. They are presented by way of the following representative example and a
discussion of their uses in several real languages, with the reader expected to adapt
them in whatever way seems most useful for specific situations.

Figure 2 is an example of how attributes and their constraints can be used in a
behavioral specification. The example illustrates the key features of this approach,
but does not demonstrate all possible attributes or constraint types. The language
is Pascal-like, but is not intentionally based on any existing behavioral description
language. Lines are numbered for later reference. The circuit described by the
example is a simple serial transmitter. Its behavior has been simplified as much as
possible while still demonstrating significant uses of constraints. The transmitter is
supposed to send data at 9600 bits per second, using a voltage of -12 ± .5 Volts to
transmit a logic 1 and +12 ±.5 Volts to transmit a 0. The host places characters to
transmit on the transmitter's "char" input, then asserts the "start" signal to begin
transmission. Every character transmitted is preceded by a start bit (a 0) and is
followed by at least 2 stop bits (l's). An "abort" input is provided with which the
host can halt the transmitter in the middle of a transmission, forcing it to begin
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(1) circuit zmitter

(2) input char 8 bits
(3) input start 1 bit
(4) input abort 1 bit

(5) output zmit 1 bit

(6) local i 3 bits

(7) zmit'logicO :< 12.5 Volts & zmit'logicO :> 11.5 Volts
(8) zmit'logicJt :< -11.5 Volts & xmit'logic1 :> -12.5 Volts

(9) minimize zmitter'power

(10) loop
(11) if start
(12) zmit'hold-fime := 104 microseconds
(13) i:= 0
(14) do
(15) timepoint started
(16) zmit := char bit i
(17) i := i + 1
(18) while i # 0 and not abort .
(19) xmit 'hold-time :> 208 microseconds
(20) zmit:= 1
(21) started'elapsed-time :< 200 microseconds
(22) else
(23) unconstrain xmit 'hold-time
(24) zmit 1
(25) end if
(26) end loop
(27) end circuit

Figure 2. A Serial Transmitter Described with Constraints

sending stop bits. Aborts must be recognized and acted upon within 200 microsec-
onds of the "abort" input being asserted. The important points demonstrated by
the example are as follows:

Attributes. Attributes are identified in this paper by a VHDL-style "ob-
ject'attribute" notation that indicates both the attribute and the part of the spec-
ification to which it pertains. Attributes are associated with variables, blocks of
code, and special objects called time points (discussed later). Generally, different
sets of attributes are relevant to different kinds of object. The attributes used in
the example, the lines at which they are first mentioned, and their meanings are as
follows:

"LogicO" (7). The voltage that encodes a logical 0. Associated with variables.

4
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"Logic-l" (8). The voltage that encodes a logical 1. Associated with variables.
"Power" (9). The power consumption of the circuit built to implement a block
of code. Associated with code blocks.
"Hold-Time" (12). The time between assignments to a variable. Associated
with variables.
"Elapsed-Time" (21). The time since a time point was last executed. Associ-
ated with time points.

The "hold-time" and "elapsed.time" attributes are discussed in more detail below.
Note that this selection of attributes is representative (but not exhaustive) of the
kinds of attribute I have found useful. It is not the final word on possible attributes,
nor should all of the attributes mentioned here be relevant in every synthesizer.

Having attributes associated with blocks of code raises the question of what
exactly is a block. In order for attributes like power consumption or layout area to
be meaningful for a block, the block must correspond to an identifiable section of the
final circuit. Thus the definition of "block" really depends on the level of granularity
at which a synthesizer will try to optimize separate elements of a specification into
single pieces of hardware. In some cases attributes of individual expression- or
statements might be meaningful, in others the only meaningful attributes might
be those of large sub-programs or even the entire specification. In the example.
the only attribute of code blocks that is used is "xmitter'power", representing the
power consumption of the entire circuit.

Timing. Timing constraints are probably among the most important in describ-
ing a circuit's behavior, and so I propose several different mechanisms for dealing
with them. Many timing constraints serve to set the rate at which data are trans-
mitted to some output or received from some input. The "hold-time" attribute
defined above is convenient for setting transmission rates with a single constraint.
Examples of the use of "hold-time" can be seen in lines 12 and 19 of the example,
where the time between consecutive assignments to "xmit" is forced to be 104 mi-
croseconds for the 9600 bits per second data transmission, and 208 microseconds
for the two bit times worth of ones between characters. A complementary attribute

("ignore time") can be defined as the time between reads of a variable. Constraints
on "ignore-time" are typically used to limit the rate at which inputs to a circuit are
tested.

Although "hold-time" and "ignore-time" can be used to describe most tim-
ing constraints, there are cases in which one wants to constrain the time between
events other than reads or writes of a variable. "Time points" are introduced to
describe this more general kind of timing. A time point is a marker that can be
placed anywhere in the executable part of a specification. Every time point has
an "elapsed lime" attribute that represents the amount of time since control last
passed the time point. In the example, a time point called "started" is placed at
the beginning of the "do" loop (line 15), thus capturing the time at which each
iteration begins. Line 21 constrains the time between the beginning of the loop

(and hence the latest test of "abort") and the beginning of the first stop bit. This
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constraint reflects the requirement that aborts be recognized and acted on within
200 microseconds of being asserted.

Basic Constraints. The constraints used in the example are equality ("" less
than or equal (":<"), greater than or equal (":>") and "minimize" (see lines 7, 8. 9,
12, 19, and 21). As with attributes, other kinds of constraint can easily be imagined.
The notation used for equality and the two inequalities deliberately reflects their
role as executable "assignments", but they differ from conventional assignments in
an important way: The actual value of an attribute is determined by the circuit
generated from a specification. Therefore, what users really do with operators
like ":<" is place constraints on implementations, hopefully using terms that are
meaningful in abstract, high-level, specifications. It is then the synthesizer that
must understand what these operators mean and how its actions will affect attribute
values if acceptable implementations are to be produced. Thus any assignment
implied by a constraint operator happens rather indirectly, and primarily at compile
time rather than during circuit operation. The deep understanding that synthesizers
must have of constraint operators and attributes means that it is probably not
practical to allow user-defined attributes in my system - it is too difficult to tell
synthesizers what they mean.

Dynamic constraints. The transmitter's specification requires both static a..i'd
dynamic constraints. The signal levels for "xmit" and the goal for power consump-
tion do not depend on what the transmitter is doing, and so are static constraints.
The relevant attributes are constrained once (lines 7 through 9) and never changed.
On the other hand, the hold time for "xmit" does vary depending on what the
transmitter is doing - while transmitting a character it must be one bit time (104
microseconds), after each character it must be two bit times, and when transmis-
sions are not even requested ("start" inactive) it can be anything at all. These
dynamic constraints are described by lines 12, 19, and 23 in the example. Each
of these lines defines a section of the specification in which a distinct constraint
applies to "xmit'hold-time". Note in particular line 23, which demonstrates an
"unconstrain" statement that removes all constraints from an attribute.

Simultaneous constraints. One feature that the expression of constraints does
share with normal assignments is that an attribute can only have one constraint
at a time. This requirement prohibits many important uses of constraints, and so
must be circumvented somehow. The serial transmitter contains a good example of
the need for multiple simultaneous constraints in the requirement that transmitted
ones and zeros be represented by voltages within certain ranges. I use "&" as a way
of combining simple constraints into more complicated ones. Thus the ranges men-
tioned above are described on lines 7 and 8 by stating that the voltage representing
a logic value is above a lower bound and at the same time below an upper bound.

Default constraints. Specifications will be easier to write if attributes can have
default constraints. For instance, Figure 2 does not state the voltage levels used
to encode logic values on the transmitter's inputs. A typical default might be that
unless otherwise specified logic 0's are represented by 0.5 ± 0.5 Volts and logic 1's
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by 4.5 - 0.5 Volts, in which case the transmitter specification is exactly the same
as if it had included lines of the form

start'logicO :< 1 Volt & start'logicO :> 0 Volts

and so forth. In other cases a good default is to have no constraint on an attribute.
An example is the "ignoretime" of the transmitter's inputs. Circuit speed, in-
cluding the rate at which these inputs are tested, is adequately controlled by the
constraints on "xmit'holdtime" and "started'elapsedtime", and so additional tim-
ing constraints are unnecessary.

Complexity of constraints. All of the constraints used in this example have
been very simple, being either minimizations of a single attribute or comparisons
between an attribute and a constant. Although simple constraints of this sort seem
adequate for practical circuit design (see Section 4), uses can be found for more
elaborate ones. For instance, one might want to limit some combination of at-
tributes (speed-power product is a good example), or constrain one combination of
attributes relative to another. Extensions to my constraint definition syntax to al-
low more general constraints are straightforward. However, one must keep in mind
that a synthesizer has to be able to tell fairly quickly what attribute values solve
a constraint and how to fix things if a constraint is violated (i.e., which attributes
should have higher values, which lower, et cetera). Constraint satisfaction quickly
becomes very expensive (NP-Hard or worse) as more elaborate forms of constraint
are allowed. Thus, while more complicated constraints than the ones I use can be
written, the complexity of solving them and their apparently infrequent use dis-
courage doing so. Those who nonetheless feel a need for constraints more elaborate
than the ones discussed in this paper can find a number of satisfaction heuristics in
constraint-based programs developed for other applications [e.g.. 5, 8, 17].

The most important reason for wanting more elaborate constraints than the
ones I propose is to describe trade-offs between attributes exactly. For example,
suppose the following two statements appear in a specification:

minimize some object'power
maximize some-object 'speed

These two requirements are probably contradictory, in that increasing circuit speed
generally requires increasing power consumption. The user would probably find it
much more useful to describe the ways in which he or she is willing to trade power
consumption for speed. Partial but nonetheless useful descriptions of such trade-offs
can be written by combining minimization or maximization with an upper or lower
bound. For example, replacing the above requirements with

minimize some-object'power & some-object'power :< 100 milliWatts
maximize some-object'speed & some-object'speed :> 10 megaHertz

7
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Figure 3. Cooperating Speed and Power Constraints

absolutely forbids trading power for speed if doing so yields a power consumption
greater than 100 milliWatts. Similarly, power reductions that require a speed be-
low 10 megaHertz are not acceptable. Within these limits the trade-off of speed
and power is undefined, although the synthesizer should generally try to increase

' speed and decrease power consumption simultaneously. Figure 3 shows how these
constraints restrict designs to a particular part of the border of the space of possi-
bilities.

3 Implementation

So far I have described a very simple set of attributes and constraints that
allows physical aspects of circuit behavior to be stated in behavioral descriptions.
Because one hopes to have automatic translation of behavioral descriptions into
circuit designs some day, it is also important to consider the implications of con-
strainable attributes for such translation. Obviously the full impact of constraints
will be understood only through the development of constraint-sensitive translators.
One such project already under way is the RASP system1 [2] at the University of
Rochester. Although this system is still in the early stages of design, some of the
issues involved in dealing with constraints have become clear. This section discusses
these issues and the ways in which they will be addressed in RASP.

3.1 Overview
Very roughly speaking. there are two parts to the problem of generating a

circuit from a specification with constraints. The obvious one is finding a translation
from the specification to a circuit design that meets the constraints. The less
obvious one is figuring out the constrained intervals in the specification, i.e., figuring
out which groups of source statements are subject to which constraints. Since
constraints are allowed to be assigned to attributes, constrained intervals must be
found through some form of flow analysis. Fortunately this analysis is quite similar
to that used in conventional compilers [1], and so is fairly easy to implement. A
general algorithm for finding constrained intervals is discussed in the next section.

In RASP, timing constraints are the only ones that are dynamic, and so circuit
generation will largely be driven by them. The intervals arising from timing con-
straints will be identified by a version of the algorithm described in the next section.

' Originally called ASP, the name was changed to avoid confusion with another

project.
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Each interval will then be translated into a sequence of circuit control steps. Timing
constraints will be met by varying the extent to which sequential source operations
are compacted into parallel circuit operations. The extent to which compaction
can be done without changing the meain of .he specification is obviously lim-
ited by data dependencies between source statements, but it is also limited by time
points and "elapsed time" constraints. Specifically, the notion that control passes
a time point or "elapsedtime" constraint at a well-defined time prevents code from
moving arbitrarily past these forms. The easiest solution is simply to disallow any
code motions across these constructs. This solution has the drawback that time
points and uses of "elapsed iime" become possibly unnecessary barriers to paral-
lelism. More sophisticated analysis in the translator could probably identify certain
kinds of code that can move across time points and related constraints, thus reduc-
ing this barrier. Because a parallel circuit generally contains more hardware than
a serial one, compaction is also limited by constraints on power consumption and
layout area. RASP's compactor will be based on microcode compaction heuristics
[7, 11], modified to take into account the more complicated interactions between
constraints. Intervals will be compacted one at a time, in order from shortest (i.e..
least time allowed) to longest. This ordering is a heuristic to deal with the problem
of overlapping intervals: doing more tightly constrained intervals early reduces the
chances of being unable to meet constraints on later ones because of poor scheduling
of the first.

3.2 An Algorithm for Identifying Constrained Intervals
Constrained intervals are easily identified in a flow graph of a behavioral spec-

ification. A form of depth-first traversal is used to explore all possible execution
paths in the graph, determining which nodes are reached by which constraints. This
algorithm is more convenient for actually listing the sequences of nodes reached by a
constraint than are the flow analysis algorithms usually described in compiler texts
(which would tell what constraints reach a node, but not necessarily by what paths).
In the following description flow graph nodes are assumed to represent individual
source statements, although the algorithm can be easily adapted to graphs in which
nodes represent basic blocks. Every flow graph is assumed to have a unique start
node representing the place at which execution of the program begins.
Algorithm and Basic Definitions

A constrained interval is considered to be a sequence of nodes, (nI,... nk), in
which n, represents a statement that establishes a constraint that affects the rest
of the sequence. It is assumed that execution can proceed through the sequence in
order, i.e., that there is an edge from ni to ni+l for all Z. This informal description
is made precise in the following definitions:

so



Definition 1: A constrained interval in a flow graph is a sequence of nodes
(nl,..., nk) with the following properties:

* ni is an opening node (see below).
" nk matches n, (see below).
* No hi, i < k, closes n, (see below).
" An edge ni --+ ni+l exists for all i between 1 and k - 1.
" n, is reachable from the start node.

Definition 2: A flow graph node is an opening node if and only if it represents a
statement whose execution marks the beginning of a sequence of statements that
may be subject to some constraint.

Definition 3: An opening node o is matched by node m if and only if execution
of (the statement represented by) m marks the end of a sequence of statements
subject to some constraint whose beginning is marked by o. Nodes o and m must
have distinct positions in the execution sequence, i.e., a node cannot immediately
match itself to yield a constrained interval of length one. The constraint(s) to which
the sequence is subject must be deducible from o and m. A node that is not opening
has no matches.

Definition 4: An opening node o is closed by node c if and only if the semantics of
the statement represented by c are such that no execution sequence (o,... , c,... m)
in which o, c, and m have distinct positions and m matches o can exist. A node
that is not an opening node is never closed.

Definitions 2, 3, and 4 are necessarily vague about the exact kinds of statement
that give rise to opening, closing, and matching nodes, because the statements
that serve these roles will vary from language to language. The following example.
however, should make the ideas clearer for the constructs discussed in this paper:

(1) timepoint t
while some-condition

(2) t'elapsed-time := 100 microseconds
(3) timepoint t

end while
(4) t'elapsed-time :< 200 microseconds -

The flow graph corresponding to this code fragment is shown in Figure 4. Nodes in
the flow graph are numbered to correspond to the statements that they represent.
Node 1 is an opening node because it marks a point relative to which later references
to t 'elapsed-time may measure time. Since node 2 constrains t 'elapsed-time and can
be reached from node 1 without passing through any nodes that close 1, node 2
matches node 1. Node 3 redeclares the time point declared by node 1, and so "

closes node 1 (i.e., any references to t 'elapsed-time that are executed after node 3
is executed will be relative to node 3, not to node 1). Node 3 is also an opening
node. Since node 2 is reachable from node 3 via the loop, node 2 matches node
3 (in addition to matching node 1). By the same reasoning that explained why

10
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OPEN timepoint t

MATCH elalap!ediie
Figur100 microseconds

(2)

CLOSE,
OPEN "ieon t

MATCH tVelapsed-time,

:_< 200 microseconds

(4)

Figure 4. Opening, Closing, and Matching Nodes

node 3 closes node 1, node 3 also closes itself. Note, however, that since a node

cannot immediately close itself this statement only means that intervals of the form
(node 3, node 2, node 3,...) cannot exist - the sequence (node 3. node 2) is still a

constrained interval. Finally, node 4 matches node 3. Node 4 does not match node

1, since no path from node 1 can reach node 4 without passing through a node that
closes node 1. Note that node 4 does not close node 3, even though there are no
paths past node 4 that end in a match for node 3. The definition of closing is based
on the meaning of statements, not the structure of graphs; so since a constraint

on a time point's "elapsed-time" does not preclude later constraints on the same
attribute, node 4 does not close node 3. The above analysis indicates that there

are three constrained intervals in Figure 4. The Figure distinguishes these intervals
by the shading of node borders. Note that several nodes belong to more than one

interval.

Another useful concept is that of an interval prefix, i.e., a sequence of nodes
that could be a prefix of a constrained interval. Formally, an interval prefix has the
following features:

Definition 5: An interval prefix in a flow graph is a sequence of nodes (nl,..., nk)

such that either k = 0 or the following hold:
* ni is an opening node.
" No n,, i < k, closes nj.
• An edge n, - n,+i exists for all i between 1 and k - 1.
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0 n I is reachable from the start node.

The definitions given so far raise problems involving cycles in flow graphs.
First, if the path defining a constrained interval contains a cycle, then there are an
infinite number of other constrained intervals that differ from the first only in how ,.
many copies of the cycle they include. Obviously no interval detection algorithm
can return all of these intervals. Second, the significance of cycles for constraint -S

satisfaction depends very much on the kinds of constraint involved. A cycle in the
flow graph is largely irrelevant to constraints that do not depend on the dynamic
behavior of the circuit, for example a constraint on layout area. On the other
hand, constraints on such attributes as time generally cannot be satisfied at all
over an interval containing a cycle. For these reasons the algorithm for finding
constrained intervals is defined only for cycle-free constrained intervals. Cycle-free
interval prefixes can also be defined. The precise definition of both terms is as
follows:

Definition 6: A constrained interval or interval prefix (n .. ,nk) is cycle-free if
and only if ni 5 nj for all 1 < i < j < k, except that ni may equal nk.

The term "cycle-free" may seem something of a misnomer in the above defi-
nition, since a cycle-free interval may actually be a single big cycle. The purpose
of the definition, however, is to distinguish those intervals that cause the problems
discussed above from those that do not. Intervals in which the first and last node
are identical generally correspond to meaningful constraints (for instance, a loop
in which each iteration must meet some timing constraint), and so are accepted by
the definition. The real problems (particularly infinite numbers of intervals) occur
when intervals longer than a single copy of a cycle exist, and these intervals are
excluded by the definition. In other words, the proper meaning of "cycle-free" is
"free of cycles that cause problems".

Using these definitions, the algorithm for finding constrained intervals in a
flow graph (Intervalize) can be given. Most of the work of Intervalize is done by
procedure trace, which carries out the basic depth-first traversal. The central point
of this traversal is to locate matches for the open argument to trace, and to record the
path from open to each match in the global variable intervals. The node argument
to trace is the current potential match; path is a sequence of nodes describing the
path by which node was reached from open. The operator "." is used to indicate
concatenation of a scalar onto a sequence. Intervalize returns a set of sequences
of nodes, with each sequence being a constrained interval in the flow graph. Note
that all opening nodes must be identified prior to running Intervalize. This is easily -

done by one or more initial passes over the flow graph
.1
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Algorithm 1 (Intervalize):
Input: A flow graph for a behavioral specification.
Output: A set of constrained intervals.
Precondition: All opening nodes in the flow graph have been identified.

intervals - 0
for each opening node n reachable from the start node in the flow graph

call trace(n, n,
return intervals

trace(node, open, path)

if node matches open
intervals ,- intervals U {path • node}

if node appears in path
Cycle detected - handling depends on specific application.

else
if node does not close open

for each successor s of node
if s = open or s does not appear in path • node

call trace(s, open, path.node)

Correctness
The obvious criterion for correctness of Intervalize is that it find all the cycle-

free constrained intervals in a flow graph and nothing else. The reasons for excluding
constrained intervals containing cycles were mentioned earlier. Note, however, that
the proper point for extending Intervalize with application-specific cycle handlers
is clearly marked above.

The first step in the correctness proof is to prove a simple Lemma that explains
the role of the open argument to trace. This Lemma just states that the open
argument is always the opening node of the interval prefix currently being explored
by trace. This fact is easily seen to be true by inspecting Intervalize, but so many,
later steps rely on it that it is worth proving formally.

Lemma 1: The first node of the sequence path • node in any invocation of trace is
that invocation's open argument.

Proof. The proof is by induction on the length of path • node. If this sequence
only contains one node, then the corresponding invocation of trace must have been
made from the top-level loop of Intervalize (since no other invocations have empty
path arguments). In this case node and open are identical and path is empty. Thus
path . node = (node) and since node = open the Lemma holds. Assume that the
Lemma holds for path - node of length k, k > 1, and let p = (nl,. .. ,nk,nk+l)
be a path • node sequence of length k + 1. Since k > 1, the invocation of trace
corresponding to p must be one of the recursive ones. It's caller must have had
path . node = (n I..... nk), which is of length k. so by the induction hypothesis
open = n, in that invocation. Since recursive calls on trace do not change open. the
invocation corresponding to p must also have open =i. fl
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The next step in the correctness proof is to show that Intervalize always ter-
minates. This is done in two steps. The first step (Lemma 2) consists of showing
that trace is always working on some cycle-free interval prefix. The second step
(Theorem 1) involves showing that the only way Intervalize can fail to terminate
is if trace goes into an infinitely deep recursion. Such a recursion would require an
infinitely long cycle-free interval prefix for trace to work on, which is impossible as
long as the flow graph given to Intervalize is finite. The formal statement of these
results follows:

Lemma 2: The path. node sequence in any invocation of trace is a cycle-free interval
prefix of the flow graph given to Intervalize.

Proof. Let p = (n,... ,nk) be a path • node sequence in trace. The proof is
by induction on k, the length of p. If k = 1 then p must be associated with
an invocation of trace that was called from the top-level loop in Intervalize. By
the construction of this loop, the only node in p is an opening node reachable
from the start node, so the first and fourth conditions for being an interval prefix
hold. The second (no node but the last closes the first) and third (there is an
edge between every pair of adjacent nodes in the sequence) hold trivially. Thus
p is an interval prefix, and must be cycle-free simply because it does not contain
enough nodes to have a cycle. Assume now that the lemma holds for path nodc
sequences of length 1, 1 > 1, and consider p = (nl,...,n,nt+l) of length 1+1. Since
I > 1, p must be associated with one of the recursive invocations of trace. Thus p
can be written as p' - n1+1 , where p' was the path • node sequence in the previous
invocation of trace and n+l is some successor of n1. Since p' is of length 1, it is
a cycle-free interval prefix by the induction hypothesis. Since n1+l is a successor
of n1, and p' is an interval prefix, there are edges between every pair of nodes in
p (third condition for being an interval prefix). Also since p' is an interval prefix.
n1 is an opening node reachable from the start node (first and fourth conditions).
Finally, no ni, i < 1 + 1 can close n, (second condition), since p' is an interval
prefix and if nj closed n, then the recursive call could not have been made (by the
"if node does not close open" test and Lemma 1). Thus p is itself an interval prefix.
Since p' is cycle-free, the only ways in which p can fail to be cycle-free are if n 1
or if nj+l = ni, 1 < i < I + 1. In either case, however, the recursive call could not
have been made, either because of the "if node appears in path" test or because of
the "if s = open or s does not appear in path • node" test. Thus p is cycle-free as
well as being an interval prefix. F1

Theorem 1: Intervalize terminates when applied to any finite flow graph.

Proof. Since there are a finite number of nodes in the flow graph, the loop in the
main body of Intervalize repeats only a finite number of times. The only way for
Intervalize not to terminate is thus for one of this loop's calls on trace to fail to

terminate. This in turn can only happen if trace makes an infinitely deep series
of recursive calls on itself. Note that in every recursive call, the called invocation
of trace must have a path • node sequence that is one node longer than its caller's
path • node sequence. Since these sequences are alway cycle-free interval prefixes
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(by Lemma 2), an infinitely deep series of recursive calls implies that there is an
infinitely long cycle-free interval prefix in the flow graph. However. the definition
of "cycle-free" implies that no cycle-free interval prefix can contain more more than
n + 1 nodes, where n is the number of nodes in the flow graph. Since n is finite.
infinite recursions are impossible, and Interva!ize must always terminate. ]

The last step in the correctness proof is to show that when Intervalize stops.
intervals contains exactly the set of cycle-free constrained intervals from the input
flow graph. The proof begins with Lemma 2 and the fact that every non-empty
cycle-free interval prefix is eventually available to trace (Lemma 3). From these facts
it can be shown that only cycle-free constrained intervals are placed in intervals,
and that all cycle-free constrained intervals are eventually placed there.

Lemma 3: Every cycle-free interval prefix of length 1 or greater in the flow graph
given to Intervalize is equal to path • node in some invocation of trace.

Proof. Assume that there is some cycle-free interval prefix p = (nr 1. , n k), k > 1.
such that there is no invocation of trace with p = path • node. Let p' = (n1 ..... n,)
be the longest prefix of p such that there is an invocation of trace with path =
(nl,...,ni-1 ) and node = ni (i.e., p' is equal to path. node in some invocation of
trace). Note that p' must be a proper prefix of p by the assumption that p $ path •
node in any invocation of trace. p' must exist and be non-empty, because n is an
opening node (by the definition of interval prefix) and p is non-empty. The top-level
loop of Intervalize ensures that an invocation of the form trace(n, n, 0) is made for
every opening node n, so one of these invocations will have path. node = (ni). This
sequence is therefore the shortest possible p'. Consider the invocation of trace with
path = (nl,... ,ni- 1) and node = ni. Clearly ni is not an element of (ni.

nor is ni+l an element of (n 2 ,... , ni), because p' is a proper prefix of p and p is
cycle-free. Also, ni cannot close ni, because p' is a proper prefix of p and p is an
interval prefix. For the same reason, there is an edge from n, to n,+,. Thus the
loop over successors of ni will be entered (Lemma 1) and there will be an invocation
of the form trace(ni+i, nh, (nh,... , ni)). This invocation will have path • node equal
to a longer prefix of p than p', which contradicts the definition of p'. Thus the
assumption that p exists at all must be invalid, and so the Lemma is proved. [I

Theorem 2: Upon termination of Intervalize, intervals contains all and only the
cycle-free constrained intervals from the input flow graph.

Proof. The proof that all cycle-free constrained intervals eventually become mem-
bers of intervals is as follows: Let p be any cycle-free constrained interval from
the flow graph given to Intervalize. By definition, p is also a non-empty cycle-
free interval prefix. Thus, by Lemma 3, there is some invocation of trace in
which path • node = p. Since p is a constrained interval, node matches open in
this invocation (relying on Lemma 1 again). Furthermore, since p is cycle-free.
node does not appear in path, except possibly as the first element. Thus the
test guarding the "intervals *-- intervals U {path . node }" statement will succeed.
and p will be added to intervals if it is not already there. The proof that only
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cycle-free constrained intervals are added to intervals follows from Lemma 2. This
Lemma ensures that the only sequences that can be added to intervals by the
"intervals +- intervals U {path - node}" statement are cycle-free interval prefixes.
The test guarding this statement ensures that the last node of these interval prefixes
matches the first, so in fact they are cycle-free constrained intervals. Since intervals
starts out empty, and is only changed by the "interval +- intervals U {path - node)"
statement, intervals can never contain anything but cycle-free constrained inter-
vals. []

Execution Time
The following paragraphs discuss the running time of Intervalize. Note that

since Intervalize is basically just a series of depth-first searches of a flow graph, it
can take no more than O(on) time, where o is the number of opening nodes in the
graph and n is the total number of nodes of any kind. However, only part of the
graph is examined for each opening node, so this bound is rather loose. A tighter
bound of 0(p), where p is the number of cycle-free interval prefixes in a graph. is
derived below. Intuitively this time seems good, but it remains unknown whether
it is truly optimal.

Note that the running time of Intervalize can be assumed to be determined by
the total number of calls made on trace. This assumption is justified by the fact
that the top level of Intervalize consists of essentially nothing but a series of calls
on trace, and that trace itself contains some constant-time processing followed by
a loop that either calls trace or does nothing on each iteration. It could be argued
that the various tests in trace to see if some node appears in path or path . node take
time proportional to the length of path. This problem can be solved by including a
marker bit in each node. Trace can set this bit whenever a node is added to path,
and clear the bit while backing out of recursive calls. Testing to see if a node is an
element of the current path is then simply a matter of testing to see whether its
marker is set, which can be done in constant time.

Using the above assumption, an expression for the running time of Intervalize
is derived by counting the number of times trace is called. Lemma 3 provides a
lower bound, since it says that trace must be called at least as many times as there
are cycle-free interval prefixes in the flow graph on which Intervalize is working.
To get an upper bound, a similar lemma (Lemma 4) is proved below, stating that
trace is called no more than once for each cycle-free interval prefix. Together, these
two lemmas establish the number of cycle-free interval prefixes in a flow graph as
a tight bound on the number of calls on trace, and hence on the running time of
Intervalize.

Lemma 4: When running Intervalize on any flow graph, no sequence of nodes
appears as path • node in more than one invocation of trace.

Proof. The proof is by induction on the length of the sequence. Sequences of length
1 only appear in the invocations made from the top-level loop of Intervalize. and
this loop iterates only once for each opening node. Thus no two invocations from
this loop can have the same path • node, and so the lemma holds. Assume that
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the lemma holds for sequences of length k. k > 1. Let p = (711.... -k1?k,Ak+]) be

a sequence of length k + 1 that appears as path • node in two different invocations
of trace. Since k > 1. both of these invocations must be recursive ones. The caller
of each of these invocations must have had path • node = (n,. ,nk), which is
of length k. Thus both invocations must have the same caller - otherwise there
would be two different invocations with identical length k path • node sequences,
which is impossible by the induction hypothesis. However, recursive calls on trace
are only made from a loop that has one iteration per successor of the current node.
and so a single invocation of trace cannot make two distinct recursive calls with
the same path - node sequence (assuming that multiple edges between nodes do not
exist). Thus no two invocations of trace can have identical length k + 1 path . node
sequences. MI

Theorem 3: The execution time of Intervalize on a flow graph containing p non-
empty cycle-free interval prefixes is 0(p).

Proof. Lemma 3 says that there must be at least p calls on trace, so execution
time must be Q(p). Since the path • node sequence in any invocation of trace is a
cycle-free interval prefix (Lemma 2), Lemma 4 means that there are no more than
p calls on trace. It follows from this fact that the execution time of trace is O(p).
Since the execution time of trace is both O(p) and Q(p) it must also be 0(p). l

An execution time of 0(p) for finding constrained intervals seems pretty good.
since one might expect that each interval prefix has to be examined at least once
to see if it is actually a constrained interval. However, I have not proven that
this execution time is optimal, and in fact faster algorithms can be imagined. For
example, since each node in a flow graph can be a component of several interval
prefixes, one might believe that algorithms exist that only look at each node once
(Intervalize looks at each node as many times as there are cycle-free interval prefixes
containing it). Thus, although Intervalize should be entirely suitable for practical
use, it remains an open question whether asymptotically faster algorithms exist.

Summary
The important points of this section have been made via a series of technical

definitions and proofs. To summarize, the section began with a series of definitions
that precisely stated what sections of specifications are subject to constraints. These
definitions were used in an algorithm (Intervalize) for finding code fragments that
are subject to constraints. A series of theorems and lemmas led to two important
conclusions about the correctness of Intervalize, namely that it always stops and
that when it stops it has found exactly the "interesting" constrained fragments of its
input. Finally, it was shown that the running time of Intervalize is tightly bounded
by the number of potential constrained fragments in its input. It was conjectured
that this running time is "good", but it is not yet known how much better one could
do.
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4 Experience

I first studied the inclusion of physical constraints in behavioral specifications
during a project aimed at finding ways of stating physical constraints in the SILCTIl
[4] language. The basic ideas of attributes and assignment-like constraints were de-
veloped during this project, as were some constraint types and attributes specific
to SILC. These ideas were first tested in descriptions of a few small telecommunica-
tions circuits. They were then more extensively tested in a detailed description of
a floppy-disk controller. This circuit was chosen as a test because its complexity is
typical of modem VLSI designs, and because timing constraints are a crucial part
of its behavior. The resulting description contained some 1400 lines of extended
SILC code, roughly 70 of which were for the specification of constraints. All the
constraints were timing constraints. The low ratio of constraint statements to oth-
ers suggests that the mechanisms proposed here are very expressive despite their
simplicity. Constraints on "Hold-Time" and "Ignore-Time" attributes of inputs and
outputs turn out to be particularly powerful, because a single constraint statement '
can establish all the timing for a number of I/O operations executed over a long
period of time.

It is difficult to compare the floppy disk controller example to the telecom-
munications circuits that were also studied because of the immense difference in
size. However, it does appear that the use of only timing constraints in the disk
controller is. not unusual. Most of the telecommunications examples required two
or three timing constraints, but no more than one or two constraints on all other
attributes. These non-timing constraints were always very stylized minimizations
of things like power consumption or layout area. These observations, although lim-
ited, reinforce the intuition that the very simple kinds of constraint suggested here
really are adequate for practical circuit design.

The ideas developed during the GTE Laboratories project have been further
refined in my present work on RASP. A RASP source language (RASP-SL), which
provides many of the features described in this paper, has been designed. The
constraint-oriented features of RASP-SL are summarized in Table 1. Although a
few small specifications have been written in RASP-SL (for example, the serial trans-
mitter in Figure 2 is adapted from a RASP-SL specification), the RASP project is
mainly intended to show that automatic, constraint-sensitive synthesis is practical.
Most of the effort has therefore been on identifying and testing the implementation
strategies described in the previous section. Work is now in progress to implement
Intervalize and other front-end analyses in Common Lisp on various workstations
(notably Texas Instruments' ExplorerTM).

SILC is a trademark of Silc Technologies, Inc.
Explorer is a trademark of Texas Instruments, Inc.
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Program Unit Attributes:
Power
Area
Clock Period

Variable Attributes:
Hold Time
Ignore Time

Time Point Attributes:
Elapsed Time

Constraints:

Maximize, Minimize

Miscellaneous:
Time points
"unconstrain"

Table 1. Attributes and Constraints in RASP's Source Language

5 Sur,.ry

I have proposed feaures that can be added to any behavioral description lan-
guage in order to describe physical resource constraints. In many cases, especially
those involving time, correct circuit behaviors cannot be fully described without
such constraints. These features have been embedded in several languages, includ-
ing one (SILC) that did not originally include them, and one (RASP-SL) that was
designed from the start with them in mind. Large, realistic devices have been
described using these mechanisms, indicating that they are powerful enough for
practical use. Finally, methods for automatically generating circuits from descrip-
tions containing constraints have been suggested. Research is in progress to find
out how well these methods work.

The work described in this paper is unique in providing a comprehensive way
of describing the physical constraints on a circuit's behavior in a form that can
easily be combined with a functional description. The ability to constrain both
execution and data representation is an important part of this work. The power
of constrainable attributes has been demonstrated on realistic circuit descriptions.
and work on building translators for them is in progress. These ideas should be
an important extension to existing methods of behavioral description as automatic
circuit design becomes a reality.
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